Secondments

Secondment Report Form  Secondment Agreement Form

Table of Secondments (sorted by staring month)

2017 2018 2019 2020

Sec. No. Res. No. Res.
Category
Sending Partner Sending Country Seconded to Partner Seconded to Country Starting Month Duration Work Package
2017
1 1 ER 1. IMech-BAS Bulgaria 3. NARRANDO Italy 2 1 2. Processing and rheological control of graphene-based nanocomposite’s
119 33 ER 6. NanoTechLab Bulgaria 5. UniSA Italy 2 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
190 48 ER 7. SIPT Georgia 9. SICHUAN UNIVERSITY China (People's Republic of) 2 3 2. Processing and rheological control of graphene-based nanocomposite’s
192 50 ER 7. SIPT Georgia 9. SICHUAN UNIVERSITY China (People's Republic of) 2 3 2. Processing and rheological control of graphene-based nanocomposite’s
195 53 ESR 7. SIPT Georgia 8. INP BSU Belarus 2 5 2. Processing and rheological control of graphene-based nanocomposite’s
102 25 ER 5. UniSA Italy 8. INP BSU Belarus 3 3 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
116 33 ER 6. NanoTechLab Bulgaria 2. CNR Italy 3 1 2. Processing and rheological control of graphene-based nanocomposite’s
9 8 ER 1. IMech-BAS Bulgaria 8. INP BSU Belarus 4 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
14 5 ESR 1. IMech-BAS Bulgaria 8. INP BSU Belarus 4 2 3. Characterization of nanocomposite hybrid structure and morphology
28 9 ER 2. CNR Italy 10. MACKENZIE  Brazil 4 1 2. Processing and rheological control of graphene-based nanocomposite’s
29 10 ER 2. CNR Italy 10. MACKENZIE  Brazil 4 1 2. Processing and rheological control of graphene-based nanocomposite’s
100 31 ESR 5. UniSA Italy 6. NanoTechLab Bulgaria 4 4 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
103 26 ER 5. UniSA Italy 8. INP BSU Belarus 4 3 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
106 29 ER 5. UniSA Italy 8. INP BSU Belarus 4 3 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
151 54 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 1. IMech-BAS Bulgaria 4 1 2. Processing and rheological control of graphene-based nanocomposite’s
196 47 ER 7. SIPT Georgia 6. NanoTechLab Bulgaria 4 2 2. Processing and rheological control of graphene-based nanocomposite’s
17 1 ER 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 5 1 2. Processing and rheological control of graphene-based nanocomposite’s
115 33 ER 6. NanoTechLab Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 5 1 2. Processing and rheological control of graphene-based nanocomposite’s
81 21 ER 4. UNamur Belgium 6. NanoTechLab Bulgaria 6 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
121 35 ER 8. INP BSU Belarus 1. IMech-BAS Bulgaria 6 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
122 36 ER 8. INP BSU Belarus 1. IMech-BAS Bulgaria 6 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
123 40 ER 8. INP BSU Belarus 1. IMech-BAS Bulgaria 6 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
130 37 ER 8. INP BSU Belarus 4. UNamur Belgium 6 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
131 38 ER 8. INP BSU Belarus 4. UNamur Belgium 6 1 3. Characterization of nanocomposite hybrid structure and morphology
179 61 ER 10. MACKENZIE  Brazil 1. IMech-BAS Bulgaria 6 1 2. Processing and rheological control of graphene-based nanocomposite’s
30 11 ESR 2. CNR Italy 10. MACKENZIE  Brazil 7 1 2. Processing and rheological control of graphene-based nanocomposite’s
59 20 ESR 3. NARRANDO Italy 1. IMech-BAS Bulgaria 7 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
63 17 ER 3. NARRANDO Italy 4. UNamur Belgium 7 1 3. Characterization of nanocomposite hybrid structure and morphology
209 33 ER 6. NanoTechLab Bulgaria 2. CNR Italy 7 1 4. Characterization of nanocomposite properties around and above percolation threshold
231 69 ESR 10. MACKENZIE  Brazil 2. CNR Italy 7 2 2. Processing and rheological control of graphene-based nanocomposite’s
152 55 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 7. SIPT Georgia 8 1 2. Processing and rheological control of graphene-based nanocomposite’s
175 57 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 8 1 2. Processing and rheological control of graphene-based nanocomposite’s
188 65 ER 10. MACKENZIE  Brazil 4. UNamur Belgium 8 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
3 5 ESR 1. IMech-BAS Bulgaria 3. NARRANDO Italy 9 2 3. Characterization of nanocomposite hybrid structure and morphology
26 4 ESR 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 9 3 2. Processing and rheological control of graphene-based nanocomposite’s
206 33 ER 6. NanoTechLab Bulgaria 10. MACKENZIE  Brazil 9 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
210 45 ESR 8. INP BSU Belarus 7. SIPT Georgia 9 3 2. Processing and rheological control of graphene-based nanocomposite’s
220 48 ER 7. SIPT Georgia 9. SICHUAN UNIVERSITY China (People's Republic of) 9 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
233 1 ER 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 9 1 2. Processing and rheological control of graphene-based nanocomposite’s
10 2 ER 1. IMech-BAS Bulgaria 8. INP BSU Belarus 10 1 4. Characterization of nanocomposite properties around and above percolation threshold
47 15 ESR 2. CNR Italy 6. NanoTechLab Bulgaria 10 2 2. Processing and rheological control of graphene-based nanocomposite’s
48 16 ESR 2. CNR Italy 6. NanoTechLab Bulgaria 10 2 2. Processing and rheological control of graphene-based nanocomposite’s
56 18 ER 3. NARRANDO Italy 1. IMech-BAS Bulgaria 10 1 2. Processing and rheological control of graphene-based nanocomposite’s
76 22 ER 4. UNamur Belgium 8. INP BSU Belarus 10 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
77 23 ESR 4. UNamur Belgium 8. INP BSU Belarus 10 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
97 28 ER 5. UniSA Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 10 1 3. Characterization of nanocomposite hybrid structure and morphology
98 29 ER 5. UniSA Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 10 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
129 35 ER 8. INP BSU Belarus 4. UNamur Belgium 10 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
133 40 ER 8. INP BSU Belarus 4. UNamur Belgium 10 3 3. Characterization of nanocomposite hybrid structure and morphology
156 60 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 6. NanoTechLab Bulgaria 10 1 2. Processing and rheological control of graphene-based nanocomposite’s
177 59 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 10 1 4. Characterization of nanocomposite properties around and above percolation threshold
222 50 ER 7. SIPT Georgia 3. NARRANDO Italy 10 2 2. Processing and rheological control of graphene-based nanocomposite’s
117 34 Technical_staff 6. NanoTechLab Bulgaria 2. CNR Italy 11 2 4. Characterization of nanocomposite properties around and above percolation threshold
183 61 ER 10. MACKENZIE  Brazil 2. CNR Italy 11 1 4. Characterization of nanocomposite properties around and above percolation threshold
230 68 ESR 10. MACKENZIE  Brazil 2. CNR Italy 11 2 3. Characterization of nanocomposite hybrid structure and morphology
234 3 ER 1. IMech-BAS Bulgaria 3. NARRANDO Italy 11 1 2. Processing and rheological control of graphene-based nanocomposite’s
68 20 ESR 3. NARRANDO Italy 8. INP BSU Belarus 12 3 3. Characterization of nanocomposite hybrid structure and morphology
87 19 ESR 3. NARRANDO Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 12 2 4. Characterization of nanocomposite properties around and above percolation threshold
149 41 ESR 8. INP BSU Belarus 5. UniSA Italy 12 4 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
157 54 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 12 1 3. Characterization of nanocomposite hybrid structure and morphology
159 56 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 12 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
168 58 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 12 1 3. Characterization of nanocomposite hybrid structure and morphology
201 47 ER 7. SIPT Georgia 3. NARRANDO Italy 12 2 2. Processing and rheological control of graphene-based nanocomposite’s
2018
66 18 ER 3. NARRANDO Italy 8. INP BSU Belarus 13 2 2. Processing and rheological control of graphene-based nanocomposite’s
22 1 ER 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 14 1 2. Processing and rheological control of graphene-based nanocomposite’s
23 15 ESR 2. CNR Italy 8. INP BSU Belarus 14 4 4. Characterization of nanocomposite properties around and above percolation threshold
33 14 ER 2. CNR Italy 10. MACKENZIE  Brazil 14 1 4. Characterization of nanocomposite properties around and above percolation threshold
99 25 ER 5. UniSA Italy 6. NanoTechLab Bulgaria 14 4 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
105 28 ER 5. UniSA Italy 8. INP BSU Belarus 14 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
113 33 ER 6. NanoTechLab Bulgaria 10. MACKENZIE  Brazil 14 2 2. Processing and rheological control of graphene-based nanocomposite’s
114 34 Technical_staff 6. NanoTechLab Bulgaria 10. MACKENZIE  Brazil 14 3 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
187 64 ER 10. MACKENZIE  Brazil 4. UNamur Belgium 14 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
6 8 ER 1. IMech-BAS Bulgaria 3. NARRANDO Italy 15 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
8 5 ESR 1. IMech-BAS Bulgaria 8. INP BSU Belarus 15 2 2. Processing and rheological control of graphene-based nanocomposite’s
31 12 ER 2. CNR Italy 10. MACKENZIE  Brazil 15 1 3. Characterization of nanocomposite hybrid structure and morphology
32 13 ER 2. CNR Italy 10. MACKENZIE  Brazil 15 1 3. Characterization of nanocomposite hybrid structure and morphology
69 17 ER 3. NARRANDO Italy 10. MACKENZIE  Brazil 15 4 4. Characterization of nanocomposite properties around and above percolation threshold
84 22 ER 4. UNamur Belgium 10. MACKENZIE  Brazil 15 2 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
143 38 ER 8. INP BSU Belarus 2. CNR Italy 15 1 3. Characterization of nanocomposite hybrid structure and morphology
154 57 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 1. IMech-BAS Bulgaria 15 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
219 60 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 15 2 4. Characterization of nanocomposite properties around and above percolation threshold
18 7 ER 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 16 4 4. Characterization of nanocomposite properties around and above percolation threshold
21 4 ESR 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 16 2 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
61 19 ESR 3. NARRANDO Italy 7. SIPT Georgia 16 1 2. Processing and rheological control of graphene-based nanocomposite’s
73 21 ER 4. UNamur Belgium 8. INP BSU Belarus 16 1 4. Characterization of nanocomposite properties around and above percolation threshold
124 41 ESR 8. INP BSU Belarus 1. IMech-BAS Bulgaria 16 4 3. Characterization of nanocomposite hybrid structure and morphology
125 42 ESR 8. INP BSU Belarus 1. IMech-BAS Bulgaria 16 4 3. Characterization of nanocomposite hybrid structure and morphology
142 45 ESR 8. INP BSU Belarus 6. NanoTechLab Bulgaria 16 1 3. Characterization of nanocomposite hybrid structure and morphology
147 46 ESR 8. INP BSU Belarus 2. CNR Italy 16 1 2. Processing and rheological control of graphene-based nanocomposite’s
60 18 ER 3. NARRANDO Italy 7. SIPT Georgia 17 1 3. Characterization of nanocomposite hybrid structure and morphology
227 66 ER 10. MACKENZIE  Brazil 1. IMech-BAS Bulgaria 17 1 4. Characterization of nanocomposite properties around and above percolation threshold
228 69 ESR 10. MACKENZIE  Brazil 4. UNamur Belgium 17 2 4. Characterization of nanocomposite properties around and above percolation threshold
34 15 ESR 2. CNR Italy 10. MACKENZIE  Brazil 18 2 2. Processing and rheological control of graphene-based nanocomposite’s
35 16 ESR 2. CNR Italy 10. MACKENZIE  Brazil 18 2 2. Processing and rheological control of graphene-based nanocomposite’s
85 23 ESR 4. UNamur Belgium 10. MACKENZIE  Brazil 18 3 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
86 18 ER 3. NARRANDO Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 18 2 2. Processing and rheological control of graphene-based nanocomposite’s
166 56 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 18 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
197 47 ER 7. SIPT Georgia 6. NanoTechLab Bulgaria 18 2 8. Dissemination and exploitation of results, IPR, networking and communication strategy
225 61 ER 10. MACKENZIE  Brazil 7. SIPT Georgia 18 1 3. Characterization of nanocomposite hybrid structure and morphology
232 1 ER 1. IMech-BAS Bulgaria 3. NARRANDO Italy 18 1 3. Characterization of nanocomposite hybrid structure and morphology
41 14 ER 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 19 2 4. Characterization of nanocomposite properties around and above percolation threshold
211 46 ESR 8. INP BSU Belarus 7. SIPT Georgia 19 4 2. Processing and rheological control of graphene-based nanocomposite’s
24 2 ER 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 20 1 2. Processing and rheological control of graphene-based nanocomposite’s
39 12 ER 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 20 1 3. Characterization of nanocomposite hybrid structure and morphology
40 13 ER 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 20 1 3. Characterization of nanocomposite hybrid structure and morphology
51 7 ER 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 20 3 4. Characterization of nanocomposite properties around and above percolation threshold
71 19 ESR 3. NARRANDO Italy 10. MACKENZIE  Brazil 20 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
132 39 ER 8. INP BSU Belarus 4. UNamur Belgium 20 1 4. Characterization of nanocomposite properties around and above percolation threshold
144 40 ER 8. INP BSU Belarus 2. CNR Italy 20 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
148 36 ER 8. INP BSU Belarus 5. UniSA Italy 20 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
158 55 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 20 1 4. Characterization of nanocomposite properties around and above percolation threshold
186 63 ER 10. MACKENZIE  Brazil 3. NARRANDO Italy 20 1 4. Characterization of nanocomposite properties around and above percolation threshold
193 51 ER 7. SIPT Georgia 8. INP BSU Belarus 20 3 3. Characterization of nanocomposite hybrid structure and morphology
207 33 ER 6. NanoTechLab Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 20 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
208 34 Technical_staff 6. NanoTechLab Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 20 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
213 54 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 20 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
221 49 ER 7. SIPT Georgia 8. INP BSU Belarus 20 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
12 3 ER 1. IMech-BAS Bulgaria 8. INP BSU Belarus 21 2 4. Characterization of nanocomposite properties around and above percolation threshold
155 58 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 1. IMech-BAS Bulgaria 21 1 4. Characterization of nanocomposite properties around and above percolation threshold
75 21 ER 4. UNamur Belgium 8. INP BSU Belarus 22 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
139 39 ER 8. INP BSU Belarus 6. NanoTechLab Bulgaria 22 1 4. Characterization of nanocomposite properties around and above percolation threshold
180 62 ER 10. MACKENZIE  Brazil 1. IMech-BAS Bulgaria 22 1 3. Characterization of nanocomposite hybrid structure and morphology
182 67 ESR 10. MACKENZIE  Brazil 4. UNamur Belgium 22 1 2. Processing and rheological control of graphene-based nanocomposite’s
204 50 ER 7. SIPT Georgia 3. NARRANDO Italy 22 2 2. Processing and rheological control of graphene-based nanocomposite’s
205 17 ER 3. NARRANDO Italy 7. SIPT Georgia 22 1 2. Processing and rheological control of graphene-based nanocomposite’s
217 58 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 22 2 4. Characterization of nanocomposite properties around and above percolation threshold
101 28 ER 5. UniSA Italy 6. NanoTechLab Bulgaria 23 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
199 51 ER 7. SIPT Georgia 6. NanoTechLab Bulgaria 23 5 2. Processing and rheological control of graphene-based nanocomposite’s
64 19 ESR 3. NARRANDO Italy 4. UNamur Belgium 24 2 3. Characterization of nanocomposite hybrid structure and morphology
88 25 ER 5. UniSA Italy 10. MACKENZIE  Brazil 24 1 3. Characterization of nanocomposite hybrid structure and morphology
89 26 ER 5. UniSA Italy 10. MACKENZIE  Brazil 24 2 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
90 27 Technical_staff 5. UniSA Italy 10. MACKENZIE  Brazil 24 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
93 30 ESR 5. UniSA Italy 10. MACKENZIE  Brazil 24 6 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
169 59 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 24 1 3. Characterization of nanocomposite hybrid structure and morphology
191 49 ER 7. SIPT Georgia 9. SICHUAN UNIVERSITY China (People's Republic of) 24 3 2. Processing and rheological control of graphene-based nanocomposite’s
2019
19 2 ER 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 25 1 3. Characterization of nanocomposite hybrid structure and morphology
49 5 ESR 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 25 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
50 6 ESR 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 25 4 2. Processing and rheological control of graphene-based nanocomposite’s
55 17 ER 3. NARRANDO Italy 7. SIPT Georgia 25 1 2. Processing and rheological control of graphene-based nanocomposite’s
58 20 ESR 3. NARRANDO Italy 1. IMech-BAS Bulgaria 25 2 4. Characterization of nanocomposite properties around and above percolation threshold
135 35 ER 8. INP BSU Belarus 3. NARRANDO Italy 25 1 2. Processing and rheological control of graphene-based nanocomposite’s
137 38 ER 8. INP BSU Belarus 3. NARRANDO Italy 25 1 4. Characterization of nanocomposite properties around and above percolation threshold
145 43 ESR 8. INP BSU Belarus 2. CNR Italy 25 5 4. Characterization of nanocomposite properties around and above percolation threshold
215 56 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 25 2 3. Characterization of nanocomposite hybrid structure and morphology
36 9 ER 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 26 2 4. Characterization of nanocomposite properties around and above percolation threshold
72 17 ER 3. NARRANDO Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 26 4 2. Processing and rheological control of graphene-based nanocomposite’s
83 22 ER 4. UNamur Belgium 6. NanoTechLab Bulgaria 26 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
108 32 ER 5. UniSA Italy 8. INP BSU Belarus 26 6 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
120 34 Technical_staff 6. NanoTechLab Bulgaria 5. UniSA Italy 26 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
176 58 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 26 1 2. Processing and rheological control of graphene-based nanocomposite’s
184 62 ER 10. MACKENZIE  Brazil 2. CNR Italy 26 1 2. Processing and rheological control of graphene-based nanocomposite’s
185 61 ER 10. MACKENZIE  Brazil 3. NARRANDO Italy 26 1 2. Processing and rheological control of graphene-based nanocomposite’s
118 33 ER 6. NanoTechLab Bulgaria 4. UNamur Belgium 27 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
226 3 ER 1. IMech-BAS Bulgaria 3. NARRANDO Italy 27 1 2. Processing and rheological control of graphene-based nanocomposite’s
11 1 ER 1. IMech-BAS Bulgaria 8. INP BSU Belarus 28 3 2. Processing and rheological control of graphene-based nanocomposite’s
37 10 ER 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 28 1 4. Characterization of nanocomposite properties around and above percolation threshold
38 11 ESR 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 28 2 4. Characterization of nanocomposite properties around and above percolation threshold
42 15 ESR 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 28 2 4. Characterization of nanocomposite properties around and above percolation threshold
43 16 ESR 2. CNR Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 28 2 2. Processing and rheological control of graphene-based nanocomposite’s
70 18 ER 3. NARRANDO Italy 10. MACKENZIE  Brazil 28 2 2. Processing and rheological control of graphene-based nanocomposite’s
74 21 ER 4. UNamur Belgium 8. INP BSU Belarus 28 1 4. Characterization of nanocomposite properties around and above percolation threshold
104 27 Technical_staff 5. UniSA Italy 8. INP BSU Belarus 28 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
178 60 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 28 1 3. Characterization of nanocomposite hybrid structure and morphology
229 70 ESR 10. MACKENZIE  Brazil 4. UNamur Belgium 28 2 2. Processing and rheological control of graphene-based nanocomposite’s
13 4 ESR 1. IMech-BAS Bulgaria 8. INP BSU Belarus 29 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
54 12 ER 2. CNR Italy 8. INP BSU Belarus 29 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
91 28 ER 5. UniSA Italy 10. MACKENZIE  Brazil 29 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
92 29 ER 5. UniSA Italy 10. MACKENZIE  Brazil 29 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
153 56 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 7. SIPT Georgia 29 2 2. Processing and rheological control of graphene-based nanocomposite’s
2 2 ER 1. IMech-BAS Bulgaria 3. NARRANDO Italy 30 1 4. Characterization of nanocomposite properties around and above percolation threshold
44 9 ER 2. CNR Italy 6. NanoTechLab Bulgaria 30 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
45 10 ER 2. CNR Italy 6. NanoTechLab Bulgaria 30 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
62 20 ESR 3. NARRANDO Italy 7. SIPT Georgia 30 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
107 31 ESR 5. UniSA Italy 8. INP BSU Belarus 30 6 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
134 43 ESR 8. INP BSU Belarus 4. UNamur Belgium 30 5 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
136 37 ER 8. INP BSU Belarus 3. NARRANDO Italy 30 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
146 45 ESR 8. INP BSU Belarus 2. CNR Italy 30 1 2. Processing and rheological control of graphene-based nanocomposite’s
150 42 ESR 8. INP BSU Belarus 5. UniSA Italy 30 5 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
160 57 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 30 1 4. Characterization of nanocomposite properties around and above percolation threshold
162 59 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 30 1 3. Characterization of nanocomposite hybrid structure and morphology
200 53 ESR 7. SIPT Georgia 6. NanoTechLab Bulgaria 30 5 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
202 48 ER 7. SIPT Georgia 3. NARRANDO Italy 30 2 3. Characterization of nanocomposite hybrid structure and morphology
223 49 ER 7. SIPT Georgia 10. MACKENZIE  Brazil 30 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
110 34 Technical_staff 6. NanoTechLab Bulgaria 8. INP BSU Belarus 31 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
111 33 ER 6. NanoTechLab Bulgaria 7. SIPT Georgia 31 1 4. Characterization of nanocomposite properties around and above percolation threshold
127 44 ESR 8. INP BSU Belarus 1. IMech-BAS Bulgaria 32 4 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
161 58 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 32 1 2. Processing and rheological control of graphene-based nanocomposite’s
164 54 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 32 1 3. Characterization of nanocomposite hybrid structure and morphology
171 57 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 7. SIPT Georgia 32 1 2. Processing and rheological control of graphene-based nanocomposite’s
174 56 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 32 1 4. Characterization of nanocomposite properties around and above percolation threshold
181 63 ER 10. MACKENZIE  Brazil 1. IMech-BAS Bulgaria 32 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
189 62 ER 10. MACKENZIE  Brazil 5. UniSA Italy 32 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
5 6 ESR 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 33 2 8. Dissemination and exploitation of results, IPR, networking and communication strategy
16 7 ER 1. IMech-BAS Bulgaria 8. INP BSU Belarus 33 3 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
20 3 ER 1. IMech-BAS Bulgaria 9. SICHUAN UNIVERSITY China (People's Republic of) 33 2 2. Processing and rheological control of graphene-based nanocomposite’s
65 20 ESR 3. NARRANDO Italy 4. UNamur Belgium 34 3 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
82 21 ER 4. UNamur Belgium 6. NanoTechLab Bulgaria 34 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
212 58 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 7. SIPT Georgia 34 1 3. Characterization of nanocomposite hybrid structure and morphology
214 55 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 34 2 2. Processing and rheological control of graphene-based nanocomposite’s
52 9 ER 2. CNR Italy 8. INP BSU Belarus 35 1 3. Characterization of nanocomposite hybrid structure and morphology
53 10 ER 2. CNR Italy 8. INP BSU Belarus 35 1 3. Characterization of nanocomposite hybrid structure and morphology
78 24 ESR 4. UNamur Belgium 8. INP BSU Belarus 35 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
109 33 ER 6. NanoTechLab Bulgaria 8. INP BSU Belarus 35 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
112 34 Technical_staff 6. NanoTechLab Bulgaria 7. SIPT Georgia 35 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
138 43 ESR 8. INP BSU Belarus 3. NARRANDO Italy 35 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances
203 49 ER 7. SIPT Georgia 3. NARRANDO Italy 35 2 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
224 51 ER 7. SIPT Georgia 10. MACKENZIE  Brazil 35 3 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
163 60 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 2. CNR Italy 36 1 2. Processing and rheological control of graphene-based nanocomposite’s
216 57 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 36 1 4. Characterization of nanocomposite properties around and above percolation threshold
2020
4 6 ESR 1. IMech-BAS Bulgaria 3. NARRANDO Italy 37 2 2. Processing and rheological control of graphene-based nanocomposite’s
126 43 ESR 8. INP BSU Belarus 1. IMech-BAS Bulgaria 38 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
173 55 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 38 1 2. Processing and rheological control of graphene-based nanocomposite’s
46 11 ESR 2. CNR Italy 6. NanoTechLab Bulgaria 39 2 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
57 20 ESR 3. NARRANDO Italy 1. IMech-BAS Bulgaria 39 2 2. Processing and rheological control of graphene-based nanocomposite’s
128 46 ESR 8. INP BSU Belarus 1. IMech-BAS Bulgaria 39 5 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
67 19 ESR 3. NARRANDO Italy 8. INP BSU Belarus 40 2 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
95 25 ER 5. UniSA Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 40 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
96 26 ER 5. UniSA Italy 9. SICHUAN UNIVERSITY China (People's Republic of) 40 1 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
165 55 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 40 1 3. Characterization of nanocomposite hybrid structure and morphology
194 52 ESR 7. SIPT Georgia 8. INP BSU Belarus 40 5 8. Dissemination and exploitation of results, IPR, networking and communication strategy
25 3 ER 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 41 2 4. Characterization of nanocomposite properties around and above percolation threshold
27 5 ESR 1. IMech-BAS Bulgaria 10. MACKENZIE  Brazil 41 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
94 32 ER 5. UniSA Italy 10. MACKENZIE  Brazil 42 6 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
167 57 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 42 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
198 48 ER 7. SIPT Georgia 6. NanoTechLab Bulgaria 42 2 3. Characterization of nanocomposite hybrid structure and morphology
218 59 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 5. UniSA Italy 42 2 3. Characterization of nanocomposite hybrid structure and morphology
7 4 ESR 1. IMech-BAS Bulgaria 3. NARRANDO Italy 43 2 5. Robust nanocomposite design and optimization of material’s formulation for 3D printing application
140 40 ER 8. INP BSU Belarus 6. NanoTechLab Bulgaria 44 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
141 42 ESR 8. INP BSU Belarus 6. NanoTechLab Bulgaria 44 1 8. Dissemination and exploitation of results, IPR, networking and communication strategy
172 54 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 3. NARRANDO Italy 44 1 2. Processing and rheological control of graphene-based nanocomposite’s
15 6 ESR 1. IMech-BAS Bulgaria 8. INP BSU Belarus 45 2 3. Characterization of nanocomposite hybrid structure and morphology
170 60 ER 9. SICHUAN UNIVERSITY China (People's Republic of) 4. UNamur Belgium 46 1 3. Characterization of nanocomposite hybrid structure and morphology
79 22 ER 4. UNamur Belgium 3. NARRANDO Italy 47 1 7. Prove of design concept by experimental validation of 3D printed nanocomposite cellular structures. Application specifications
80 24 ESR 4. UNamur Belgium 3. NARRANDO Italy 47 1 6. Modeling, simulation and optimization of nanocomposite based multifunctional cellular structures  with pre-defined performances